

FOR

PERFORMANCE BASED SUPPORTABILITY

Presented by

Charles O. Coogan, C.P.L.

Acquisition Logistics Engineering

6797 N. High Street, Worthington, OH 43085 (614) 436-1609 - FAX (614) 436-1295 - staff@ale.com - http://www.ale.com

PRESENTATION OVERVIEW

- : History of Supportability Standards
- : Performance Based Supportability
- : Supportability Standard Development
 - 8 Objective
 - 8 Approach
 - 8 Implementation

HISTORY OF SUPPORTABILITY STANDARDS

- : MIL-STD-472 Maintainability Analysis
- : DARCOM PAM 750-16 DARCOM Guide to Logistics Support Analysis
- : MIL-STD-1388-1, MIL-STD-1388-1A LSA
- : The Perry Initiative 29 JUN 94
- : SOLE Supportability Re-Engineering Committee
- : Early Commercial Supportability Standard Efforts

We've come a long way, but there is a long way to go

SUPPORTABILITY

A.Systems
Approach to
Availability

PERFORMANCE BASED SUPPORTABILITY OBJECTIVE

Change the mind set from:

- Large volumes of analysis and data
- Supportability as a separate discipline
- Supportability being "equal" with performance
- Supportability being good if you can afford it

To:

- Supportability as a performance measure
- Supportability allocation as a systems engineering responsibility
- Design for supportability as a design responsibility
- Support system design is a logistics engineering responsibility
- Operating support systems as a product support function

All Done as an Integrated Product Team

PERFORMANCE BASED SUPPORTABILITY (A Concurrent Engineering Process)

Supportability is Designed In Not Analyzed In

PERFORMANCE BASED DESIGN, A CLOSED LOOP SYSTEM

ALE

SIX STEPS OF PBS

- 6. Continual Improvement
- 5. Acquire and Operate Support
- 4. Design Support Capability
- Control Design Parameters
- 2. Determine Design Parameter Support Metrics
- 1. Define Operational Supportability Requirements

(ALE)

Sample Program

Communication Management System

- **♦** Completed Steps 1, 2, & 3
- **♦ Determined O&S Cost Drivers**
 - Operator Manpower & Training 74% of O&S Cost
- Established Design Requirements to Control
- O&S Cost
 - Operator Manpower \leq \$3.3 M (over 25 years)
 - Operator Training \leq \$700 K (over 25 years)
- Converted Design Requirements to Design Parameters
- **♦ Expected Cost Avoidance: More Than The System Cost**

O&S Cost Distribution For Previous Item

Communication Management System Design & Support System Design Parameters

PARAMETER

VALUE

Equipment Design Related:

Mean Time to Operate Equipment (MTTOE) 12 seconds or less

Mean Time Between Maintenance Actions 800 aircraft flight hours or more

(Corrective)

Mean Time to Repair (on A/C) 15 minutes or less

Mean Time to Repair (off A/C) 8 hours or less

Preventive Maintenance Requirements None

Testability/Built-In Test Refer to Supplier SOW para. 9.7-9.8

Support System Related:

Remoteness from Maintenance 15 minutes or less

Spares Fill Rate 95%

Mean Time To Obtain Spares 1st Line 15 Minutes or less

Mean Time To Obtain Spares 2nd Line 6 hours or less

Operator Trainig Course Duration 4 hours or less

Sample Program Marine Amphibious Assault Vessel

- Proposal Phase PBS Steps 1, 2, & 3
- ♦ Selected Suppliers Based on Equipment Performance Against Established Design
- Criteria

Developed a System With a 40% Reduction in the Cost-of-Ownership

WHAT WE NEED TO MAKE IT WORK

- Train Senior Managers on potential for cost of ownership reductions through PBS
- Train Systems and Design Engineers on how to utilize PBS effectively
- Train Logistics Engineers on how to effectively operate in a concurrent engineering environment

SOLE PBS TRAINING PROGRAMS

- 1/2-day session for executives
 - (What PBS is all about)
- 3-day session for technical managers
 - (How to put PBS to work)
- 5-day session for engineers and product support teams
 - (How to apply PBS to specific programs)

For details, contact Katherine O'Dea at SOLE home office (301) 459-8446 or e-mail solehq@aol.com

ALE

SUPPORTABILITY STANDARD DEVELOPMENT

: Objectives

: Approach

: Implementation

SUPPORTABILITY STANDARD OBJECTIVES

- Define supportability, its metrics and means of evaluation or measurement
- Enhance supportability communications between buyer and seller
- : Enhance communication across segments of commerce

The Standard must add value to products or processes

STANDARD DEVELOPMENT APPROACH

: Keep it:

- 8 Simple
- 8 Aligned with ISO criteria
- 8 Performance based
- 8 Industry-wide
- 8 Current with technology and business

IMPLEMENTATION

- : Work within SAE G-11 Supportability Committee
- : Solicit industry and government inputs
- : Develop a draft Standard
- : Encourage use and comment
- : Formalize the Standard

The Standard must capitalize on Best Industry Practices

